
11/4/21

1

ECE 241 – Advanced Programming I
Fall 2021

Mike Zink

Lecture 16
Divide and Conquer –

Fast Fourier Transform (FFT)

0

Introduction

• In several cases, it is desirable to evaluate a signal in the
frequency domain as it gives a more insightful information about
it.

• A few use cases of FFT:
– audio processing to clear noise
– image processing to smooth images
– OFDM (used in cellular communication)
– speech recognition
– audio fingerprinting (apps like Shazam and SoundHound)

1

11/4/21

2

• Given the original signal, 𝑓(𝑡), the Fourier transform is denoted by

𝐹 𝑗𝜔 =)
!"

"
𝑓(𝑡)𝑒!#$%&𝑑𝑡

• It decomposes the signal in the time domain into the frequency
domain. For example:

2

Fourier Transform

Piano note, E4.
(Source: Time-Frequency Analysis of Musical Instruments)

2

• The square wave on the top left is
composed of a sum of multiple
sine waves.

• Fourier Transform allows us to
visualize a signal in the
frequency domain, showing all its
components, called harmonics.

• The Fourier Transform is also
useful to find distortions in a signal
(among other applications).

3

Fourier Transform

3

11/4/21

3

• The DFT is a discrete representation of the continuous Fourier
transform, which can be fed into a computer.

• Let 𝑁 samples be denoted by 𝑟 = 0, 1,… ,𝑁 − 1

𝐴' = 4
()*

+!,

𝑋(𝑒!#$%(-

𝐴! is the 𝑟"# coefficient of the DFT.

𝑋$ is the 𝑘"# sample of the time series.

• Using conventional methods, the DFT algorithm takes 𝑶(𝑵𝟐)
operations.

4

Discrete Fourier Transform (DFT)

Reference: What Is the Fast Fourier Transform?, by WT Cochran et al. - 1967

4

• It is a numerically efficient way to calculate the DFT
• It was originally developed by Gauss around 1805, but

rediscovered by Cooley and Tukey in 1965

• The FFT algorithm exploits the symmetries of 𝑒!$
!"
(/

Let 𝑊+ = 𝑒!$
!"
#

1. Complex conjugate symmetry 𝑊+
((+!/) = 𝑊+

!(/ = 𝑊+
(/ ∗

2. Periodicity in n,k 𝑊+
(/ = 𝑊+

((+3/) = 𝑊+
((3+)/

5

Fast Fourier Transform (FFT)

5

11/4/21

4

• Uses divide and conquer algorithm to simplify the number of
operations (break big FFT into smaller FFT, easier to solve)

1. Divide into even and odd summations of size (𝑁/2). This is
called decimation in time:
𝑌(: even-numbered points 𝑋*, 𝑋#, 𝑋4, …
𝑍(: odd-numbered points (𝑋,, 𝑋5, 𝑋6, …)

𝐴' = 4
()*

+
#!,

𝑌(𝑒
!47$'(+ + 𝑒

!#7$'
+ 4

()*

+
#!,

𝑍(𝑒
!47$'(+

𝑟 = 0, 1,… ,
𝑁
2 − 1

6

Fast Fourier Transform (FFT)

6

2. Conquer: recursively compute 𝑌(𝑎𝑛𝑑 𝑍(
𝑌(𝑎𝑛𝑑 𝑍(can each be divided by 2 (yielding 𝑁/4 samples).
If 𝑁 = 2/, we can make 𝑛 such reductions.

3. Combine
𝐴' = 𝑌(𝑋# + 𝑥. 𝑍(𝑋#

• The FFT algorithm takes 𝑶(𝑵 𝒍𝒐𝒈𝟐𝑵) operations.

7

Fast Fourier Transform (FFT)

7

11/4/21

5

8

Example for N=8

Even
indexed
terms

Odd
indexed
terms

𝑁
2

%
∗ 2 + 𝑁 ≈ &

%

%
+ N

8

• Keep splitting the terms, i.e., each +
#

= 2 ∗ +
4

DFTs

• We can split log#𝑁 times
• As N gets large

≈ 𝑂(𝑁 log#𝑁)

9

Example for N=8

9

11/4/21

6

10

DFT algorithm implementation in Python
import numpy as np
from timeit import Timer

pi2 = np.pi * 2

def DFT(x):
N = len(x)
FmList = []
for m in range(N):

Fm = 0.0
for n in range(N):

Fm += x[n] * np.exp(- 1j * pi2 * m * n / N)
FmList.append(Fm / N)

return FmList

N = 1000
x = np.arange(N)
t = Timer(lambda: DFT(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))

10

11

DFT Performance

0.10 0.69

605.29

2650.96

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

128 1024 32768 65536

Ti
m

e
(s

ec
on

ds
)

Number of Samples

DFT Computation Time

DFT

All this and following experiments were run on a virtual machine running Ubuntu 18.04 LTS with one processor
(Intel(R) Core(TM) i5-4300U CPU @ 1.90GHz) and 3GB of memory.

11

11/4/21

7

12

FFT algorithm implementation in Python
Recursive FFT function

import numpy as np

def FFT(x):
N = len(x)
if N <= 1: return x
even = FFT(x[0::2])
odd = FFT(x[1::2])
T = [np.exp(-2j * np.pi * k / N) * odd[k] for k in range(N // 2)]
return [even[k] + T[k] for k in range(N // 2)] + \

[even[k] - T[k] for k in range(N // 2)]

N = 1024
x = np.random.random(N)
t = Timer(lambda: FFT(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))

12

13

FFT Performance

0.08 0.10
0.40

0.890.10

0.69

605.29

2650.96

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

128 1024 32768 65536

Ti
m

e
(s

ec
on

ds
)

Number of Samples

DFT vs. FFT

FFT
DFT

Log
Scale

13

11/4/21

8

14

Numpy implementations
FFT example using the Numpy fftpack

import numpy as np
from timeit import Timer

N = 10000
x = np.arange(N)
t = Timer(lambda: np.fft.fft(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))

14

15

Scipy implementations
FFT example using the SciPy fftpack

import scipy
from scipy.fftpack import fft
from timeit import Timer

N = 10000
x = scipy.arange(N)
t = Timer(lambda: fft(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))

15

11/4/21

9

16

To put things into perspective

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

128 1024 32768 65536

Ti
m

e
(s

ec
on

ds
)

Number of Samples

FFT - Numpy FFT – SciPy FFT

FFT
Numpy FFT
SciPy FFT

16

• Audio fingerprinting is a signature that summarizes an audio
recording

• Also known as Content-Based audio Identification (CBID)
• The best known application are apps like Shazam and

SoundHound, that link unlabeled audio recordings to a
corresponding metadata (song name and artist, for instance)

17

Application – Audio Fingerprinting

Source: http://willdrevo.com/fingerprinting-and-audio-recognition-with-python/ for all following
slides, unless otherwise stated

17

11/4/21

10

• Sampling: the standard sampling rate in digital music, such as HIFI,
is 44,100 samples per second (from Nyquist theorem – 2 x 20 kHz)

• Quantization: the standard quantization uses 16 bits, or 65,536
levels

• PCM or Pulse Code Modulation: is the representation of the analog
signal into zeros and ones

• This means that each second of music will have 44,100 samples per
channel (one channel – Mono; two channels – Stereo)
E.g.: 3 minutes of stereo song will have 15,876,000 samples

18

Background on Digital Audio

18

• We use the FFT to analyze the
audio signal in the frequency
domain

• Then we create a
spectrogram of the song, a
visual representation of the
frequencies as they vary in
time

• Amplitude:
Red color – higher value,
Green color – lower value

19

How to fingerprint an Audio

19

11/4/21

11

20

Finding Peaks

20

21

Fingerprint Hashing

• We hash the frequency of
peaks and the time difference
between them

• The result is a unique
fingerprint for the song

• Each app has its own hashing
function to uniquely identify a
song

21

11/4/21

12

22

How Shazam Works in a Nutshell

Source: An Industrial-Strength Audio Search Algorithm, by Avery Li-Chun Wang (Shazam Whitepaper)

Speaker

Ambient
Noise

MIC

1. Receive
audio and

noise
2. Fingerprinting

3. Send to Shazam

Shazam DB

4. Compare
with current
fingerprinting
database

5. Send Title
and artist

22

23

