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ECE 241 – Advanced Programming I
Fall 2021

Mike Zink

Lecture 16
Divide and Conquer –

Fast Fourier Transform (FFT)
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Introduction

• In several cases, it is desirable to evaluate a signal in the 
frequency domain as it gives a more insightful information about 
it.

• A few use cases of FFT:
– audio processing to clear noise
– image processing to smooth images
– OFDM (used in cellular communication)
– speech recognition
– audio fingerprinting (apps like Shazam and SoundHound)
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• Given the original signal, 𝑓(𝑡), the Fourier transform is denoted by

𝐹 𝑗𝜔 = )
!"

"
𝑓(𝑡)𝑒!#$%&𝑑𝑡

• It decomposes the signal in the time domain into the frequency 
domain. For example:
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Fourier Transform

Piano note, E4. 
(Source: Time-Frequency Analysis of Musical Instruments)
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• The square wave on the top left is 
composed of a sum of multiple 
sine waves.

• Fourier Transform allows us to 
visualize a signal in the 
frequency domain, showing all its 
components, called harmonics.

• The Fourier Transform is also 
useful to find distortions in a signal 
(among other applications).
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Fourier Transform
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• The DFT is a discrete representation of the continuous Fourier 
transform, which can be fed into a computer.

• Let 𝑁 samples be denoted by 𝑟 = 0, 1,… ,𝑁 − 1

𝐴' = 4
()*

+!,

𝑋(𝑒!#$%(-

𝐴! is the 𝑟"# coefficient of the DFT.

𝑋$ is the 𝑘"# sample of the time series.

• Using conventional methods, the DFT algorithm takes 𝑶(𝑵𝟐)
operations.
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Discrete Fourier Transform (DFT)

Reference: What Is the Fast Fourier Transform?, by WT Cochran et al. - 1967
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• It is a numerically efficient way to calculate the DFT
• It was originally developed by Gauss around 1805, but 

rediscovered by Cooley and Tukey in 1965

• The FFT algorithm exploits the symmetries of 𝑒!$
!"
# (/

Let 𝑊+ = 𝑒!$
!"
#

1. Complex conjugate symmetry 𝑊+
((+!/) = 𝑊+

!(/ = 𝑊+
(/ ∗

2. Periodicity in n,k 𝑊+
(/ = 𝑊+

((+3/) = 𝑊+
((3+)/
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Fast Fourier Transform (FFT)
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• Uses divide and conquer algorithm to simplify the number of 
operations (break big FFT into smaller FFT, easier to solve)

1. Divide into even and odd summations of size (𝑁/2). This is 
called decimation in time:
𝑌(: even-numbered points 𝑋*, 𝑋#, 𝑋4, …
𝑍(: odd-numbered points (𝑋,, 𝑋5, 𝑋6, … )

𝐴' = 4
()*

+
#!,

𝑌(𝑒
!47$'(+ + 𝑒

!#7$'
+ 4

()*

+
#!,

𝑍( 𝑒
!47$'(+

𝑟 = 0, 1,… ,
𝑁
2 − 1
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Fast Fourier Transform (FFT)
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2. Conquer: recursively compute 𝑌( 𝑎𝑛𝑑 𝑍(
𝑌( 𝑎𝑛𝑑 𝑍( can each be divided by 2 (yielding 𝑁/4 samples). 
If 𝑁 = 2/, we can make 𝑛 such reductions.

3. Combine
𝐴' = 𝑌( 𝑋# + 𝑥. 𝑍( 𝑋#

• The FFT algorithm takes 𝑶(𝑵 𝒍𝒐𝒈𝟐𝑵) operations.
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Fast Fourier Transform (FFT)
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Example for N=8

Even 
indexed 
terms

Odd 
indexed 
terms

𝑁
2

%
∗ 2 + 𝑁 ≈ &

%

%
+ N
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• Keep splitting the terms, i.e., each +
#

= 2 ∗ +
4

DFTs

• We can split log#𝑁 times
• As N gets large

≈ 𝑂(𝑁 log#𝑁)
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Example for N=8
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DFT algorithm implementation in Python
import numpy as np
from timeit import Timer

pi2 = np.pi * 2

def DFT(x):
N = len(x)
FmList = []
for m in range(N):

Fm = 0.0
for n in range(N):

Fm += x[n] * np.exp(- 1j * pi2 * m * n / N)
FmList.append(Fm / N)

return FmList

N = 1000
x = np.arange(N)
t = Timer(lambda: DFT(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))
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DFT Performance
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All this and following experiments were run on a virtual machine running Ubuntu 18.04 LTS with one processor 
(Intel(R) Core(TM) i5-4300U CPU @ 1.90GHz) and 3GB of memory.
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FFT algorithm implementation in Python
# Recursive FFT function

import numpy as np

def FFT(x):
N = len(x)
if N <= 1: return x
even = FFT(x[0::2])
odd = FFT(x[1::2])
T = [np.exp(-2j * np.pi * k / N) * odd[k] for k in range(N // 2)]
return [even[k] + T[k] for k in range(N // 2)] + \

[even[k] - T[k] for k in range(N // 2)]

N = 1024
x = np.random.random(N)
t = Timer(lambda: FFT(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))
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FFT Performance
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Numpy implementations
# FFT example using the Numpy fftpack

import numpy as np
from timeit import Timer

N = 10000
x = np.arange(N)
t = Timer(lambda: np.fft.fft(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))
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Scipy implementations
# FFT example using the SciPy fftpack

import scipy
from scipy.fftpack import fft
from timeit import Timer

N = 10000
x = scipy.arange(N)
t = Timer(lambda: fft(x))
print('Elapsed time: {} s'.format(str(t.timeit(number=1))))
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To put things into perspective
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• Audio fingerprinting is a signature that summarizes an audio 
recording

• Also known as Content-Based audio Identification (CBID)
• The best known application are apps like Shazam and 

SoundHound, that link unlabeled audio recordings to a 
corresponding metadata (song name and artist, for instance)
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Application – Audio Fingerprinting

Source: http://willdrevo.com/fingerprinting-and-audio-recognition-with-python/ for all following 
slides, unless otherwise stated
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• Sampling: the standard sampling rate in digital music, such as HIFI, 
is 44,100 samples per second (from Nyquist theorem – 2 x 20 kHz)

• Quantization: the standard quantization uses 16 bits, or 65,536 
levels

• PCM or Pulse Code Modulation: is the representation of the analog 
signal into zeros and ones

• This means that each second of music will have 44,100 samples per 
channel (one channel – Mono; two channels – Stereo)
E.g.: 3 minutes of stereo song will have 15,876,000 samples
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Background on Digital Audio
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• We use the FFT to analyze the 
audio signal in the frequency 
domain

• Then we create a 
spectrogram of the song, a 
visual representation of the 
frequencies as they vary in 
time

• Amplitude:
Red color – higher value, 
Green color – lower value

19

How to fingerprint an Audio
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Finding Peaks
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Fingerprint Hashing

• We hash the frequency of 
peaks and the time difference 
between them

• The result is a unique 
fingerprint for the song

• Each app has its own hashing 
function to uniquely identify a 
song
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How Shazam Works in a Nutshell

Source: An Industrial-Strength Audio Search Algorithm, by Avery Li-Chun Wang (Shazam Whitepaper)

Speaker

Ambient
Noise

MIC

1. Receive 
audio and 

noise
2. Fingerprinting

3. Send to Shazam

Shazam DB

4. Compare 
with current 
fingerprinting 
database

5. Send Title 
and artist
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